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Abstract. The effect of shell structure on the distribution of the excitation energy between fragments of
the deep inelastic collisions is analysed in the microscopic approach. It is shown that the density of the
single-particle levels of the proton and neutron subsystems near the Fermi surface determines the ratio
between the excitation energies of fragments at the initial stage of the collision. It is shown also that
the shell structure strongly influences the correlations between the width of the charge distributions and
the total kinetic energy losses. Calculations are performed for the 40,48Ca+248Cm reactions. The results
obtained suggest a possible interpretation for the observed concentration of the excitation energy in the
light fragment in deep inelastic collisions for a wide range of the total kinetic energy losses.

PACS. 25.70.Hi Transfer reactions – 25.70.Lm Strongly damped collisions

1 Introduction

Dissipation of a large amount of the kinetic energy in deep
inelastic heavy-ion collisions (DIC) is a fundamental time-
dependent process [1,2] that has attracted theoretical in-
terest since the discovery of this class of reactions. At an
earlier stage of investigations it was assumed that the ex-
citation energy is distributed between reaction partners
in proportion to their masses. However, after a series of
experiments, it became clear that a large part of the exci-
tation energy is concentrated in the light fragments for a
wide range of total kinetic energy losses (TKEL). Various
models have been proposed to explain this phenomenon,
taking into account a coupling of the relative motion to
the intrinsic degrees of freedom. The simple macroscopic
models with phenomenological friction forces cannot be
used to treat this problem. In microscopic models, fric-
tion forces are derived considering a coupling of the rel-
ative motion to the specific intrinsic degrees of freedom.
However, not all of these models can consider a division
of the excitation energy between the reaction partners.

To microscopic models, which can make predictions
for the excitation energy partitioning between the reaction
partners, belong the model developed in [3]. In this model,
all transport phenomena are assumed to be mediated by
the exchange of independent nucleons between interacting
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nuclei. Sufficient amounts of the kinetic energy is dissi-
pated when large numbers of nucleons are transferred in
alternating directions. Usually, in deep inelastic heavy-ion
collisions, a shift of the centroid of the mass distributions
is small in comparison with the width. Therefore, it is
expected that both nuclei receive, on the average, compa-
rable amounts of excitation energy. In the model [3], which
is based on the Fermi-gas model for the intrinsic motion,
the kinetic energy losses are explained by the fact that the
intrinsic momentum of a transferred nucleon is summed
with the momentum of the relative motion. As a result,
this momentum can be larger than the Fermi momentum
PF, thus producing the excitation of a donor nucleus.

For relative velocities of the interacting nuclei at which
the adiabatic approximation loses its accuracy, the model
developed in [4,5] suggests that particle-hole states are
excited in the two interacting nuclei as a result of di-
abatic transitions between the single-particle levels of a
time-dependent one-body potential. Thus, in this model,
a description of the dissipative processes is strongly based
on the single-particle level schemes in the two-center po-
tential well of a dinuclear system. Detailed calculations
based on this model for the 139La+109Ag reaction [6] have
shown that the excitation energy per nucleon ε∗ is smaller
for the heavier reaction partner. At the same time, it
is known from the calculations of inelastic processes in
nucleus-nucleus collisions that appreciable energy dissipa-
tion takes place even before the first crossing of the single-
particle levels near the Fermi surface [7]. Therefore, it is
necessary to look for other possibilities to explain an ob-



116 The European Physical Journal A

served partition of the excitation energy between reaction
partners.

The important aspect of the description of a nucleon
transfer and a kinetic energy dissipation is connected with
an influence of the peculiarities of the shell structure of the
interacting nuclei on the correlations between the kinetic
energy loss and the width of the fragment charge distribu-
tion. Indeed, it was demonstrated in [1,8–11] by analysing
the experimental data for different reactions that these
correlations are sensitive to the projectile-target combi-
nation. So, it is interesting also to investigate the effect
of the shell structure near the Fermi surface on the shar-
ing of the excitation energy between fragments of binary
reactions. This is the aim of the present paper.

In fact, we will investigate the influence of the single-
particle level density near the Fermi surface on these char-
acteristics. The calculations are performed with the exper-
imentally determined single-particle scheme of Ca isotopes
and with the single-particle scheme in which the level den-
sity is doubled artificially. In both cases the proton and
neutron separation energies remain constant at the be-
ginning of interaction. However, a number of the single-
particle states taken into account is increased accordingly
to the scaling of the single-particle scheme. In [12–15],
we developed a microscopic approach to describe the loss
of the total kinetic energy and its partitioning between
the reaction partners in DIC. The particle-hole excitation
and the nucleon exchange are responsible for this dissipa-
tion mechanism. Using this model, we have successfully
described different characteristics of deep inelastic reac-
tions, such as the centroid positions and the width of the
mass and charge distributions as functions of the excita-
tion energy and partition of the excitation energy between
the reaction product [12,15].

Comparing our model to the model [3], we should men-
tion that in principle the effect of the addition of relative
and intrinsic nucleon momenta can be taken into account
in the framework of our approach. In order to do this, it is
necessary to transform the Hamiltonian into an intrinsic
frame. Then, the additional terms depending on the veloc-
ity of the relative motion will appear in the Hamiltonian.
These new terms will contribute to the matrix elements
of the single nucleon transfer and, therefore, will influence
the kinetic energy dissipation process. However, this effect
is not included in the present calculations.

2 Model

It is convenient to start with the total Hamiltonian of a
dinuclear system written in the form

Ĥ = Ĥrel(R;P) + Ĥin(ξ) + δV̂ (R, ξ), (1)

where the Hamiltonian of a relative motion,

Ĥrel(R;P) =
P̂2

2µ
+ Û(R̂), (2)

consists of the kinetic energy operator and the nucleus-
nucleus interaction potential Û(R̂). Here, R̂ is the relative

distance between the centers of mass of the fragments, P̂
is the conjugate momentum, and µ is the reduced mass of
the system; ξ is a set of relevant intrinsic variables. The
last two terms in (1) describe the internal motion of nuclei
and the coupling between the relative and internal motions
(for details, see [12,13]). It is clear that the coupling term
leads to a dissipation of the kinetic energy into the en-
ergy of the internal nucleon motion and to an increase of
the attractive part of nucleus-nucleus potential [14]. Our
further consideration will be concentrated on this term.

Let us take a sum of the last two terms in (1) as a
single-particle Hamiltonian of a dinuclear system Ĥ plus
a residual interaction,

Ĥin(ξ) + δV̂ (R, ξ) = Ĥ(R, ξ) + hresidual,

Ĥ(R) =
A∑

i=1

(−h̄2
2m

∆i + V̂P (ri − R) + V̂T (ri)
)
, (3)

where m is the nucleon mass and A = AP + AT is the
total number of nucleons in the system.

Then, in the second quantization representation, the
Hamiltonian Ĥ(R, ξ) can be written as

Ĥ(R, ξ) =
∑
P

εP a†
P aP +

∑
T

εT a†
T aT

+
∑
i,i′
Vii′(R)a†

iai′ , (4)

where∑
i,i′
Vii′(R)a†

iai′ =
∑
T,P

gPT (R)(a†
P aT +H.c.)

+
∑
P,P ′

Λ
(T )
PP ′(R)a†

P aP ′ +
∑
T,T ′

Λ
(P )
TT ′(R)a†

T aT ′ . (5)

Here P ≡ (nP , jP , lP ,mP ) and T ≡ (nT , jT , lT ,mT ) are
the sets of quantum numbers characterizing the single-
particle states. The single-particle basis is constructed
basing on the single-particle states of the noninteract-
ing nuclei—the projectile ion |P 〉 and the target nucleus
|T 〉. Since |P 〉 and |T 〉 being the eigenstates of different
Hamiltonians are not orthogonal, at first, we orthogonal-
ized them approximately

|P̃ 〉 = |P 〉 − 1
2

∑
T

|T 〉〈T |P 〉, (6)

|T̃ 〉 = |T 〉 − 1
2

∑
P

|P 〉〈P |T 〉. (7)

For this basis set, the orthogonality condition is satisfied
up to terms linear in 〈P |T 〉. Then

Λ
(T )
PP ′(R) = 〈P |VT (r)|P ′〉, (8)

Λ
(P )
TT ′(R) = 〈T |VP (r − R)|T ′〉, (9)

gPT (R(t)) =
1
2
〈P |VP (r − R) + VT (r)|T 〉. (10)
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The nondiagonal matrix elements Λ(T )PP ′ (Λ(P )
TT ′) generate

the particle-hole excitations in the projectile (target) nu-
cleus. The matrix elements gPT are responsible for the
nucleon exchange between reaction partners. These ma-
trix elements were calculated using the method proposed
in [16,17]. The coupling between the intrinsic nuclear de-
grees of freedom and the collective variable R is introduced
by the R dependence of the sum of the single-particle po-
tentials in (3). During reactions the energies and the wave
functions of the single-particle states of the interactive nu-
clei are disturbed by the mean field of the reaction partner
nucleus. However, because of the small overlap of the in-
teractive nuclei in DIC (Voverlap/(VP + VT ) ≈ 0.06) this
effect can be taken into account in the perturbation calcu-
lations. This assumption is confirmed by the calculations
of the single-particle basis in the strongly deformed nuclei,
when the radius of a neck connecting two clusters forming
compound nucleus, is small. It was shown in [18,19] that
in this case the single-particle scheme of the compound
nucleus is a superposition of the single-particle schemes of
the isolated clusters, with a good accuracy.

Thus,

|P̃ 〉 −→ |P̃ 〉+
∑
P ′

Λ
(T )
PP ′(R)
εP − εP ′

|P̃ ′〉, (11)

|T̃ 〉 −→ |T̃ 〉+
∑
T ′

Λ
(P )
TT ′(R)
εT − εT ′

|T̃ ′〉 (12)

and the renormalized single-particle energies are

ε̃P (R) = εP + 〈P |VT (r)|P 〉, (13)
ε̃T (R) = εT + 〈T |VP (r − R)|T 〉. (14)

In (13) and (14) εP (T ) are the single-particle energies of
the nonperturbed states of the projectile (target) nucleus.
As a result the matrix elements Λ(T )PP ′ , (Λ(P )

TT ′) and gPT

are renormalized also

Vii′ (R) −→ Vii′(R)

+
∑

k

Vik(R)Vki′(R)
(

1
εi − εk +

1
ε′i − εk

)
. (15)

Numerically, the contribution of the correction terms are
small, however, they are taken into account in the calcu-
lations below. Note also the effect of a nucleon exchange
on the single-particle energies used in the calculations. Of
course when atomic and mass numbers of the interacting
nuclei change during a collision, their mean fields change
also. However, since a centroid shift of the charge or mass
distribution is usually small in DIC, we neglect this effect
in the calculations below. Of course the evolution of the
occupation numbers of the single-particle states produced
by excitations of nuclei or by nucleon exchange is a very
important effect and is taken into account.

Since explicit allowance for the residual interaction re-
quires extensive calculations, it is customary to take the

two-particle collision integral into account in a linearized
form (τ -approximation) [12,13]:

ih̄
∂ ˆ̃n(t)
∂t

= [Ĥ(R), ˆ̃n(t)]− ih̄

τ
[ˆ̃n(t)− ˆ̃n

eq
(R)] , (16)

where ñeq(R) is a local quasi-equilibrium distribution, i.e.,
a Fermi distribution with the temperature T correspond-
ing to the excitation energy at the internuclear distance
R:

ñeqi (R) =
[
1 + exp

( ε̃i(R)− λ(R)
T

(R)
)]−1

. (17)

In (17) λ is the chemical potential for the considered neu-
tron or proton subsystems. The chemical potential for neu-
trons λN

P (T ) and protons λZ
P (T ) of the projectile like “P”

and target like “T” nuclei are calculated using at each
time step the conditions

NP (t) =
∑

i

(2ji + 1)ñeqi (t) ,

where ji is an angular momentum of the single-particle
state i. The number of particles at the moment t,NP (t),
is determined by the sum of the initial number of particles
and a shift of the centroid of the particle distribution to
the moment t. The effective temperatures of the interact-
ing nuclei were calculated by the expression

TP (T )(t) = 3.46
√
E∗

P (T )(t)/AP (T )(t) (18)

at the current time t. The excitation energies E∗
P (T )(t) are

determined below by (28). In nuclear matter calculations
the relaxation time approximation was used in [20–22].
This way is justified, because, at the excitation energies,
which are realized typically in DIC the mean free path
of nucleons in nuclei is comparable to nuclear radius due
to the Pauli principle. Therefore the effect of the residual
two-body interaction is relatively small. Due to the small
value of nuclei temperature at the beginning of the cal-
culation, the difference between nonequilibrium ˆ̃n(t) and
equilibrium ˆ̃n

eq
(R) occupation numbers does not exceed

0.0001 for levels near the Fermi surface. During the inter-
action this difference does not exceed 0.3 (see figs. 3-6).
At the same time, as will be shown below in section 3 the
values of τ are sufficiently large. As a consequence at each
step of the calculations the ratio (ˆ̃n(t) − ˆ̃n

eq
(R))/τ re-

placing the collision integral is small enough to justify an
assumption. So, the system is not far from the equilibrium
and the kinetic equation can be linearized.

To calculate the excitation energies of the reaction
partners E∗

P (t) and E∗
T (t), we should know the occupa-

tion numbers of the single-particle states in both nuclei.
They can be found by solving the equation for the single-
particle density matrix ñ in the form (16). Substituting
our Hamiltonian (4) into (16), we get [12,13]

ih̄
∂ñi

∂t
=

∑
k

[Vik(R)ñki − Vki(R)ñik]− ih̄
τi

[ñi − ñeqi ] , (19)
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where ñi is a diagonal and ñik is a nondiagonal matrix el-
ement of the density matrix; τ = {τi} is the decay time of
the single-particle excitations (see Appendix A). The ap-
proximate equation for nondiagonal matrix elements takes
the form

ih̄
∂ñik

∂t
= h̄

[
ω̃ik(R)− 2i

τik

]
ñik + Vki(R) [ñk − ñi] , (20)

where we have used the notations ω̃ik = [ε̃i − ε̃k] /h̄ and
τik = τiτk/(τi + τk).

Substituting the solution of eq. (20) into eq. (19), we
get

ñi(t̄ ) = exp
(
t− t̄
τi

)
×

×
{
ñi(t) +

1
τi

t̄∫
t

dt′ñeqi (R(t′)) exp
(
t′ − t
τi

)

+
∑

k

t̄∫
t

dt′
t′∫

t

dt′′Ωik(t′, t′′) exp
(
t′′ − t̄
τik

)

×[ñk(t′′)− ñi(t′′)]

}
, (21)

where

Ωik(t, t′) =
2
h̄2

Re

{
Vik(R(t))Vki(R(t′))

× exp


i

t∫
t′

dt′′ω̃ki(R(t′′))





 . (22)

The formal solution of eq. (21) is found by dividing the
interval t̄ − t into small steps ∆t and using the assump-
tion ω̃ki(R(t′′)) ≈ ω̃ki(R(t′)) which is acceptable because
of the smallness of the time step ∆t, which is taken to
be equal to 0.8 · 10−22 s. ∆t characterizes the time in-
terval during which the R-dependent mean field of the
combined dinuclear system changes so little that we can
neglect the effect of this changing on the intrinsic motion.
Note that an intensive dissipation of the relative kinetic
energy into an intrinsic excitation energy of the interacting
nuclei takes place at the values of R(t) corresponding to
the minimum of the nucleus-nucleus potential where the
velocity of the relative motion increases after overcoming
the Coulomb barrier and the friction coefficient for relative
motion increases with an increase of the overlap between
the mean fields of the interacting nuclei [14]. Because of
proportionality of the friction forces to the velocity of the
relative motion, dissipation of the kinetic energy will be
more intensive when dinuclear system moves over the po-
tential minimum. In our calculations, for the initial value
of the effective temperature, we used T (0)=0.05 MeV. Ac-
cording to the expressions (13), the changes of the single-
particle energies are mainly due to the diagonal matrix
elements of the average potential of the partner nucleus

which are functions of the relative distance R(t). From
(20) we derive that

ñi(t+∆t) = ñ
eq
i (R(t+∆t))

[
1− exp

(−∆t
τi

)]

+ni(t+∆t) exp
(−∆t
τi

)
, (23)

where

ni(t+∆t) = ñi(t)

+
∑

k

t+∆t∫
t

dt′Ωik(t′, t′)
sin[ω̃ki(R(t′))(t′ − t)]

ω̃ki(R(t′))

×[ñk(t′)− ñi(t′)]. (24)

Note that eqs. (23) and (24) are in fact integral equations
for ñi(t).

One of our aims is to calculate the ratio of the exci-
tation energies of the projectile-like (E∗

P ) and target-like
(E∗

T ) fragments
RP/T = E∗

P /E
∗
T . (25)

We defined a change of the excitation energy of the
proton (P) (or neutron (N )) subsystem in each of the
colliding nuclei by the following equation

E∗
P (t+∆t) = E

∗
P (t) + 〈ĤP (R, ξ)− λP N̂P 〉t+∆t

− 〈ĤP (R, ξ)− λP N̂P 〉t . (26)

Using explicit expressions for ĤP and N̂P , as well as per-
forming averaging, we obtain

E∗
P (t+∆t) = E

∗
P (t)

+
∑
iP

[
∆εiP

(t))−∆λP (t)
]
ñiP

(t+∆t)

+
∑
iP

[
(ε̃iP

(t)− λP (t)
]
∆niP

(t) . (27)

Here ∆ε,∆n and ∆λ are the changes of the single-particle
energies, the occupation numbers and the chemical poten-
tial, respectively, during time interval ∆t.

Our calculations have shown that a contribution of the
second term in (27) to the excitation energy is negligibly
small, namely ∆E∗

P (t)/E
∗
P (t) ≤ 0.01.

Therefore, the excitation energies of the proton E∗(Z)
P (T )

and neutron E∗(N)
P (T ) subsystems in nuclei are calculated

step by step along the time scale using the equation

E∗
P (T )(t+∆t) = E

∗
P (T )(t)

+
∑

iP (jT )

[
ε̃iP (jT )(R(t))− λP (T )(R(t))

]
×[
ñiP (jT )(t+∆t)− ñiP (jT )(t)

]
. (28)

It should be stressed that the effect of the single-particle
energy changes is taken into account in this expression,
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since at every time step ∆t the new values of the renor-
malized single-particle energies are substituted into the
eq. (28) in accordance with the eq. (13).

The TKEL is defined as

Eloss = E∗
P + E∗

T , (29)

where E∗
P = E

∗(Z)
P + E∗(N)

P and E∗
T = E

∗(Z)
T + E∗(N)

T .
As can be seen from eqs. (21) and (22), the occupa-
tion numbers depend on an interaction matrix element
Vik(R(t)), which is a short notation for Λ(T )PP ′ , Λ

(P )
TT ′ de-

scribing particle-hole excitations in projectile-like and tar-
get-like nuclei, or gPT , which is responsible for nucleon
transfer. Thus, we can separately analyse the contribution
of the two mechanisms—particle-hole excitations and the
nucleon transfer—to the kinetic energy dissipation.

The variances σ2Z and σ2N are determined by the occu-
pation numbers through the equation

σ2Z(N)(t) =
∑
P

Z(N)
ñP (t)[1− ñP (t)]. (30)

For the well separated nuclei the nucleus-nucleus in-
teraction potential is

U (0) = UC + Unucl + Urot , (31)

where UC, Unucl, and Urot are its Coulomb, nuclear,
and rotational parts, respectively. The nuclear part Unucl
was calculated by a double folding procedure of the nu-
clear densities and the effective nucleon-nucleon forces of
Migdal [23] (for details see [14]):

Unucl(R) =
∫
ρ
(0)
1 (r − R1)feff [ρ]ρ

(0)
2 (r − R2)d3r , (32)

feff [ρ] = 300 ·
(
fin + (fex − fin)ρ(0)− ρ(r)

ρ(0)

)
. (33)

Here fin = 0.09, fex = −2.59 are the constants of the
effective nucleon-nucleon interaction: ρ = ρ

(0)
1 + ρ(0)2 ; Ri

(i = 1, 2) is the position of the center of mass of the frag-
ment i. The nucleon densities are assumed to have a Fermi
distribution. The particle-hole excitations and a nucleon
exchange lead to modification of the nucleus-nucleus in-
teraction potential

U (0)(R) −→ U (0)(R) + δU(R), (34)

where the correction δU(R) is connected with the evo-
lution of the nuclear density. This effect was considered
in [14]. The explicit expression for δU(R) is presented in
Appendix B. Our calculations have shown that the ra-
tio δU(R)/U(R) is equal to 0.005 in the potential well of
U(R).

3 Results and discussion

The well-known nonequilibrium sharing of the excitation
energy between fragments of the deep inelastic collisions

was reviewed in [2]. The light and heavy products of deep
inelastic heavy-ion collisions are distinguished by the aver-
age energy distance between the single-particle levels near
the Fermi surface: in a light fragment, this energy dis-
tance is larger than in a heavy one. For this reason, on
the average, the energy of the particle-hole excitation in
a light fragment is larger than in a heavy fragment. Due
to this fact, it is natural to assume that the main rea-
son for a larger excitation energy per nucleon in a light
fragment is the larger energy interval between the single-
particle states in the light nucleus near the Fermi surface.
Below, we will check this assumption. In fact, to estab-
lish the influence of the shell structure near the Fermi
surface on the nucleon transfer and the sharing of an exci-
tation energy between the fragments of binary reactions,
we will compare the results of calculations performed with
the single-particle level scheme of a light nucleus that are
well-established experimentally with those schemes which
have an increased or decreased energy intervals compared
to the experimental ones. Since the nucleon separation
energy remains to be fixed, we can talk about variation
of the single-particle level density near the Fermi surface.
Simultaneously with a scaling of a single-particle scheme
a number of the single-particle states taken into consid-
eration is changed accordingly. In fact, where the single-
particle level density of the light fragment is increased,
two-three additional levels are taken into account.

As an example, consider the 40,48Ca +248Cm reactions.
The calculations are performed with the experimentally
determined single-particle scheme of Ca isotopes and with
the single-particle scheme in which the level density is
doubled artificially. The proton and neutron separation
energies remain constant. The results of the calculations
are shown in figs. 1a and 2a. It is seen that RP/T de-
creases with an increase of the single-particle level density
near the Fermi surface of the projectile at a given TKEL
(Eloss). The results of calculations for other combinations
of the interacting nuclei confirm this tendency.

The results of the estimation on the scale, over which
the effective temperature of projectile- and target-like
fragments changes, are presented by solid and dashed
curves in figs. 1b and 2b for the 40,48Ca + 248Cm reac-
tions, respectively. The temperature scale decreases for
the projectile-like fragments (thick-dashed curve) and in-
creases for target-like ones (thin-dashed curve) with in-
crease of the single-particle level density near the Fermi
surface of the projectile. The obtained coolness of target-
like fragments in comparison with the projectile-like frag-
ments in the reactions under discussion is confirmed by
the fact that all of the observed maxima of the isotopic
distributions 〈A′〉Z for heavy fragments are located on the
neutron-rich side of the potential energy surface [24]. The
authors of paper [24] concluded that the measured nu-
clides must have been formed cold.

Thus, we can conclude that a larger value of the excita-
tion energy per nucleon in the light fragment is explained
by its lower single-particle level density near the Fermi
surface compared to a heavy fragment.
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Fig. 1. The dependence of the ratio of excitation energies
RP/T (a), the scale of temperature in projectile- (thick curves)
and target-like (thin curves) fragments (b), and the charge vari-
ance σ2

Z (c) on Eloss for the
40Ca + 248Cm reaction, calculated

with realistic single-particle schemes (solid curve) and with
the single-particle scheme of the light fragment whose single-
particle level density near the Fermi surface is doubled (dashed
curve). Nucleon separation energies are the same in both cases.

In figs. 1c and 2c, we show the results of calculations
of the charge variance σ2Z as a function of the TKEL per-
formed with different single-particle schemes for a light
fragment. It is seen that σ2Z increases more rapidly with
an excitation energy increase if a single-particle level den-
sity at the Fermi surface of the projectile-like fragment
(PLF) takes a larger value. This result is in correspon-
dence with the experimentally observed influence of the
shell structure on the correlation between the charge vari-
ance and TKEL [9,11]. It was observed that TKEL in-
crease more rapidly with σ2Z in the 208Pb (7.6 MeV/A)
+ 208Pb reaction than in the 208Pb (7.5 MeV/A) + 238U
and 238U (7.4 MeV/A) + 238U reactions. In other words,
at the same TKEL, σ2Z is larger in reactions with 238U
than with 208Pb. The single-particle level density near the
Fermi surface in 238U is also larger than in 208Pb.

Now consider the influence of the scaling of a level den-
sity on the occupation numbers of the single-particle states
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Fig. 2. The dependence of the ratio RP/T of excitation ener-
gies (a), the scale of temperature of projectile- (thick curves)
and target-like (thin curves) fragments (b), and the charge
variance σ2

Z (c) on Eloss for the
48Ca + 248Cm reaction, cal-

culated with realistic single-particle schemes (solid curve) and
with the single-particle scheme of the light fragment whose
single-particle level density near the Fermi surface is doubled
(dashed curve). Nucleon separation energies are the same in
both cases. For comparison the charge variance σ2

Z on Eloss

for the 40Ca + 248Cm reaction, calculated with realistic single-
particle schemes (dotted curve), is presented.

in the interacting nuclei. In figs. 3–6, we show the occupa-
tion numbers of neutron and proton single-particle states
calculated with the experimentally established (figs. 3a-
6a) and compressed (figs. 3b-6b) single-particle schemes of
Ca while the single-particle scheme of 248Cm (figs. 3c-6c)
was not changed. Notice that in the case of the compressed
(figs. 3b-6b) single-particle schemes of Ca the number of
the bound states increases due to the fact that the quasi-
bound states become bound after scaling because of the
constancy of the nucleon separation energies. It is clearly
seen that with an increase of the single-particle level den-
sity near the Fermi surface, the transitional region from
the occupied to the unoccupied states becomes narrower.
This means that the effective temperature characterizing
the single-particle occupation numbers in PLF is smaller
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Fig. 3. The calculated dynamical (solid curve with squares)
occupation numbers as functions of the neutron single-particle
energies in the light fragment for the 40Ca+248Cm deep in-
elastic collision. The results are obtained with the realistic (a)
and compressed (b) the single-particle scheme of 40Ca while
the single-particle scheme of 248Cm (c) was not changed. Ap-
proximate description of the occupation numbers by the Fermi
distribution function with temperature is given by the dotted
curve. For these quantities, the left ordinate axis is used. The
width of the single-particle levels (Γi) are shown by dashed
curves with stars (right ordinate axis).

for the larger level density if the reaction conditions, in-
cluding the bombarding energy, are the same. For clarity,
we have shown also the results of the approximate descrip-
tion of the calculated occupation numbers by the smooth
Fermi distribution function with temperature fixed to get
a better fit (figs. 3a-6a).

A decrease in the effective temperature characterizing
the nucleon occupation numbers in the reaction products
with an increase of the single-particle level density near
the Fermi surface is just in correspondence with the re-
sults demonstrated in figs. 1, 2. The calculations are done
for two projectile-target combinations, 40,48Ca + 248Cm.
In these cases, the projectiles differ by the positions of
the chemical potential. Note that the lowest single-particle
levels in 248Cm were not included in the calculations be-
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Fig. 4. The same as in fig. 3, but for the neutron subsystem
in the 48Ca +248Cm reaction.

cause of the small changes of their occupation numbers.
They are not presented in figs. 3c-6c. Thus, a density of
the single-particle levels near the Fermi surface plays a
crucial role in the generation of the excitation energy of
nuclei.

The relaxation times of the single-particle levels τi used
in the calculations of an evolution of the single-particle
occupation numbers are calculated according to formula
(A.1). Near the Fermi surface τi changes from 1.7·10−22 s
to 6.5·10−19 s. The equilibration time for a Fermi-gas was
estimated by Bertsch [20]

τ = 2 · 10−22sMeV/ε∗(t), (35)

where ε∗(t) is the total excitation energy per nucleon. For
the reactions under consideration τ is near 10−21 which is
comparable with the values of τi obtained for levels near
the Fermi surface.

The values of τi are related to the width of the single-
particle states Γi by Γi = h̄/τi. The values of Γi corre-
sponding to the excitation energies realized at the end of
the reaction (treaction = 2 ·10−21s) are presented in figures
3-6 by the dashed curve with stars (right axis). Thus the
term h̄

τ (ñi − ñeqi) in (19) does not exceed 0.025.
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Fig. 5. The same as in fig. 3, but for the proton subsystem in
the 48Ca +248Cm reaction.

Closing this section, consider some other effects of the
shell structure. It is clear that the peculiarities of the shell
structure depend on the neutron numbers. For example,
the proton separation energy in 40Ca and 48Ca differ sig-
nificantly, 8.329 MeV and 15.807 MeV, respectively. To
see this effect, it is interesting to compare the values of
RP/T presented in figs. 1a and 2a for 40Ca +248Cm and
48Ca +248Cm reactions. The additional neutrons in 48Ca
lead to an increase of the ratio RP/T for a given value of
the total excitation energy. It correlates with the result
obtained in [15] that neutrons get more excitation energy
than protons.

Another effect of the increase of the neutron number of
a projectile is seen in the correlation between the charge
number variance, σ2Z , and TKEL (fig. 2c). The curve de-
scribing the dependence of σ2Z on TKEL for reaction with
40Ca is lower than the corresponding curve for 48Ca +
248Cm reaction at the large TKEL. This result is in quali-
tative agreement with the experimental data obtained for
the reactions under consideration [24]. This effect can be
explained by the difference in the proton separation en-
ergies of 40Ca and 48Ca. The proton separation energy
for 48Ca (SP = 15.807 MeV) is larger than for 40Ca
(SP = 8.329 MeV). It means that 48Ca has more bound
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Fig. 6. The same as in fig. 3, but for the proton subsystem in
the 40Ca+248Cm reaction.

states of protons than 40Ca. So, during deep inelastic colli-
sions the 48Ca can exchange by a larger number of protons
with the target nucleus 248Cm than 40Ca. A similar re-
sult was observed in reactions with 248Cm as a target and
48Ca and 40Ca as projectiles in [24] (see Fig. 10 therein)
at Ekin = 1.1ECoul.

4 Conclusion

We have investigated the influence of the single-particle
level density of the PLF near the Fermi surface on the ratio
of the excitation energies of the light and heavy fragments
in DIC. It is shown that a two-fold increase of the single-
particle level density of the PLF (the single-particle level
scheme of the target-like fragment remains unchanged) de-
creases the ratio of the excitation energies of the light to
heavy fragments by approximately 1.5 times. Since light
fragments have smaller single-particle level densities near
the Fermi surface than the heavy ones, we consider this
result as an indication on the possible reason of the well-
known experimental fact that the projectile-to-target ex-
citation energy ratio is significantly larger than the ratio
of their masses, as is expected according to thermody-
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namical arguments. It is shown also that the difference in
nucleon separation energies of 40Ca and 48Ca affects on
the ratio of the excitation energies of the projectile- and
target-like fragments, RP/T , and the correlation between
the charge number variance, σ2Z , and TKEL.
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Appendix A.

The value of τi is calculated using the results of the theory
of quantum liquids [25] and the effective nucleon-nucleon
forces from [23]:

1

τ
(α)
i

=
√
2π

32h̄ε(α)FK

[
(fK − g)2 + 1

2
(fK + g)2

]

×
[(
πTK

)2
+

(
ε̃i − λ(α)K

)2][
1+exp

(λ(α)K − ε̃i
TK

)]−1

, (A.1)

where

TK(t) = 3.46

√
E∗

K(t)
〈AK(t)〉 (A.2)

is the effective temperature determined by the amount
of intrinsic excitation energy E∗

K = E
∗(Z)
K + E∗(N)

K and
by the mass number 〈AK(t)〉 (with 〈AK(t)〉 = 〈ZK(t)〉 +
〈NK(t)〉). In addition, λ(α)K (t) and E∗(α)

K (t) are the chemi-
cal potential and intrinsic excitation energies for the pro-
ton (α = Z) and neutron (α = N) subsystems of the nu-
cleus K (K = 1(projectile), 2(target)), respectively. Fur-
thermore, the finite size of the nuclei and the available
difference between the numbers of neutrons and protons
need to use the following expressions for the Fermi ener-
gies [23]:

ε
(Z)
FK

= εF

[
1− 2

3
(
1 + 2f ′K

) 〈NK〉 − 〈ZK〉
〈AK〉

]
, (A.3)

ε
(N)
FK

= εF

[
1 +

2
3
(
1 + 2f ′K

) 〈NK〉 − 〈ZK〉
〈AK〉

]
, (A.4)

where εF=37 MeV,

fK = fin − 2
〈AK〉1/3

(fin − fex), (A.5)

f ′K = f ′in −
2

〈AK〉1/3
(f ′in − f ′ex) (A.6)

and fin = 0.09, f ′in = 0.42, fex = −2.59, f ′ex = 0.54,
g = 0.7 are the constants of the effective nucleon-nucleon
interaction.

Appendix B.

Expressions for the friction coefficients

γR(R(t)) =
∑
i,i′

∣∣∣∣∂Vii′(R(t))
∂R

∣∣∣∣
2

B
(1)
ii′ (t), (B.1)

γθ(R(t)) =
1
R2

∑
i,i′

∣∣∣∣∂Vii′(R(t))
∂θ

∣∣∣∣
2

B
(1)
ii′ (t), (B.2)

and the dynamic contribution to the nucleus-nucleus po-
tential

δV (R(t)) =
∑
i,i′

∣∣∣∣∂Vii′(R(t))
∂R

∣∣∣∣
2

B
(0)
ii′ (t), (B.3)

were obtained in [14] by estimation of the evolution of the
coupling term between the relative motion of nuclei and
the nucleon motion inside nuclei; B(0)

ii′ (t) and B
(1)
ii′ (t) are

calculated as follows:

B
(n)
ik (t) =

2
h̄

∫ t

0

dt′(t− t′)n exp
(
t′ − t
τik

)

× sin [ωik (R(t′)) (t− t′)] [ñk(t′)− ñi(t′)], (B.4)

h̄ωik = εi + Λii − εk − Λkk . (B.5)

References
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